R_Code: KEGG analysis

library(clusterProfiler)
library(org.Hs.eg.db)

# 读取输入数据文件
file_path <- "C:/Users/Lamarck/Desktop/UP_genes_ENSEMBL_ENTREZID.csv"
data <- read.csv(file_path, header = TRUE)

# 提取基因列表(ENTREZID)
gene <- data$ENTREZID

# KEGG 富集分析
kegg_result <- enrichKEGG(
gene = gene,
organism = "hsa",
pvalueCutoff = 1,
qvalueCutoff = 1
)

# 结果转为数据框
kegg_frame <- as.data.frame(kegg_result)
rownames(kegg_frame) <- 1:nrow(kegg_frame)

# 添加排序变量(用于后续可视化)
kegg_frame$order <- factor(rev(seq_len(nrow(kegg_frame))), labels = rev(kegg_frame$Description))

# 保存结果
output_path <- "C:/Users/Lamarck/Desktop/kegg_frame.csv"
write.csv(kegg_frame, file = output_path, row.names = FALSE)

本站原创,如若转载,请注明出处:https://www.ouq.net/3772.html

(0)
打赏 微信打赏,为服务器增加50M流量 微信打赏,为服务器增加50M流量 支付宝打赏,为服务器增加50M流量 支付宝打赏,为服务器增加50M流量
上一篇 06/02/2025 23:17
下一篇 06/05/2025 00:10

相关推荐