空间转录组学分析包-Spatial transcriptomics Packages

  • Merfishtools – [Python] – MERFISHtools implement a Bayesian framework for accurately predicting gene or transcript expression from MERFISH data.MERFISHtools用于预测MERFISH数据的基因或转录表达。最重要的是,可以在两个或多个条件下进行差异基因表达分析,包括倍数变化和变异系数的可信间隔,并控制FDR。

    Citation

    If you use MERFISHtools, please cite our paper

    Köster, Johannes, Myles Brown, X. Shirley Liu. “A Bayesian Model for Single Cell Transcript Expression Analysis on MERFISH Data.” Bioinformatics 2018. https://doi.org/10.1093/bioinformatics/bty718.

    Installation

    MERFISHtools can be installed and updated easily via Bioconda.

    Usage

    For usage instructions at the command line, please issue

    merfishtools --help
    

    A typical MERFISHtools workflow is as follows.

    Step 1: Estimate transcript expressions

    Transcript expressions are estimated from raw MERFISH data via

    merfishtools exp --threads 8 codebook.txt data.txt --estimate estimates.txt > expression.txt
    

    See

    merfishtools exp --help
    

    for additional parameters.

    Input

    The file codebook.txt is a MERFISH codebook (example), consisting of tab separated columns:

    • feature,
    • codeword
    • expressed.

    The last column has to contain a 1 if a feature is expressed (e.g. it is a transcript or gene), and a 0 if it is a misidentification probe (see Chen et al. Science 2015). Note that these probes are important for MERFISHtools to estimate noise rates and provide more accurate predictions.

    The file data.txt (example) contains MERFISH readouts in tab-separated format. The expected columns are

    • cell,
    • feature,
    • hamming_dist,
    • cell_position_x,
    • cell_position_y,
    • rna_position_x,
    • rna_position_y.

    When using MERFISH protocol v2, you will have a binary file format containing the readouts. Merfishtools will detect this automatically.

    Output

    Results are provided as probability mass functions (PMF) at STDOUT, in the format

    • cell,
    • feature (e.g. gene, transcript),
    • expression,
    • posterior probability.

    Further, the optional flag --estimate estimates.txt results in a table with expression estimates of the form:

    • cell,
    • feature,
    • maximum a posteriori (MAP) estimate,
    • standard deviation,
    • maximum a-posteriori probability estimate (MAP),
    • lower bound of 95% credible interval,
    • upper bound of 95% credible interval.

    Step 2: Estimate differential expression

    Two conditions

    In case of two conditions, you can issue

    merfishtools diffexp --threads 8 expression1.txt expression2.txt > diffexp.txt
    

    to calculate differentially expressed transcripts. See

    merfishtools diffexp --help
    

    for additional parameters.

    Input

    The files expression1.txt and expression2.txt (example) contain the PMFs of the two conditions to compare, and are obtained by running step 1 on the data for each condition.

    Output

    Results are provided as tab separated table at STDOUT (here piped into the file diffexp.txt) with columns

    • feature (e.g. gene, transcript),
    • posterior error probability (PEP) for differential expression,
    • expected FDR when selecting all features down to the current,
    • bayes factor (BF) for differential expression,
    • maximum a posteriori (MAP) log2 fold change of first vs second group,
    • standard deviation of log2 fold change,
    • maximum a posteriori (MAP) log2 fold change,
    • lower bound of 95% credible interval of log2 fold change,
    • upper bound of 95% credible interval of log2 fold change.

    Multiple conditions

    In case of more than two conditions, you can issue

    merfishtools multidiffexp --threads 8 expression1.txt expression2.txt expression3.txt ... > diffexp.txt
    

    to calculate differentially expressed transcripts. Here, the coefficient of variation over the condition means is used as measure for differential expression. See

    merfishtools multidiffexp --help
    

    for additional parameters.

    Input

    The files expression1.txt and expression2.txt, … (example) contain the PMFs of the conditions to compare, and are obtained by running step 1 on the data for each condition.

    Output

    Results are provided as tab separated table at STDOUT (here piped into the file diffexp.txt) with columns

    • feature (e.g. gene, transcript),
    • posterior error probability (PEP) for differential expression,
    • expected FDR when selecting all features down to the current,
    • bayes factor (BF) for differential expression,
    • maximum a posteriori (MAP) coefficient of variation (CV),
    • standard deviation of CV,
    • maximum a posteriori (MAP) CV,
    • lower bound of 95% credible interval of CV,
    • upper bound of 95% credible interval of CV.

    Author

    Johannes Köster

  • NMFreg – [Python] – The method is proposed in Slide-seq paper and reconstructs expression of each Slide-seq bead as a weighted combination of metagene factors, each corresponding to the expression signature of an individual cell type, defined from scRNA-seq.
  • Starspace – [Python] – Defines a schema for gene or protein expression data containing spatially localized information. Converts data from a variety of assay types, including Spatial Transcriptomics, CODEX, In-situ Sequencing, MERFISH, osmFISH, and starMAP. Demonstrates how to visualize and interact with these data using common analysis packages, and convert the formats into loom and anndata objects, for downstream analysis in R and Python.
  • SpatialDe – [Python] – SpatialDE is a statistical test to identify genes with spatial patterns of expression variation from multiplexed imaging or spatial RNA-sequencing data.

如若转载,请注明出处:https://www.ouq.net/spatialtranscriptomicspack.html

(0)
打赏 微信打赏,为服务器增加100M流量 微信打赏,为服务器增加100M流量 支付宝打赏,为服务器增加100M流量 支付宝打赏,为服务器增加100M流量
上一篇 2022年3月2日 上午11:56
下一篇 2022年3月3日 上午12:18

相关推荐

  • 在Ubuntu 18.04上编译bcl2fastq v2.20

    与MiSeq使用MiSeq Reporter自动将二进制碱基调用(BCL)文件转换为FASTQ格式不同,NextSeq、HiSeq和NovaSeq系统的输出需要用户开发的或第三方的…

    单细胞测序 1天前
    8
  • 从小鼠皮肤伤口分离巨噬细胞用于单细胞RNA测序

    了解组织修复中的巨噬细胞异质性是一个重大挑战。在这里,我们描述了一个协议,它结合了从皮肤伤口中分离免疫细胞和随后基于流式细胞仪的伤口巨噬细胞分拣和单细胞RNA测序。我们使用原始Sm…

    2022年4月26日
    44
  • dplyr包筛选数据

    dplyr与安装 dplyr是一个强大的R软件包,用于处理,清理和汇总非结构化数据。简而言之,它使得R中的数据探索和数据操作变得简单快捷。 最简单的方法是安装 tidyverse包…

    2020年3月17日
    737
  • R:使用R连接数据库处理数据

    1.数据库连接 library(DBI) library(dplyr) library(dbplyr) library(odbc) con <- dbConnect(odbc…

    2022年3月6日
    41
  • edgeR:RNAseq差异基因比较

    Empirical analysis of digital gene expression data in R 安装: source(“http://bioconduc…

    2020年8月14日
    220