RNAseq:mRNA表达FPKM标准话原理和计算方法

mRNA Expression HT-Seq Normalization

RNA-Seq expression level read counts produced by HT-Seq are normalized using two similar methods: FPKM and FPKM-UQ. Normalized values should be used only within the context of the entire gene set. Users are encouraged to normalize raw read count values if a subset of genes is investigated.

FPKM

The Fragments per Kilobase of transcript per Million mapped reads (FPKM) calculation normalizes read count by dividing it by the gene length and the total number of reads mapped to protein-coding genes.

Upper Quartile FPKM

The upper quartile FPKM (FPKM-UQ) is a modified FPKM calculation in which the total protein-coding read count is replaced by the 75th percentile read count value for the sample.

Calculations

Calc_FPKM_andUQ

  • RCg: Number of reads mapped to the gene
  • RCpc: Number of reads mapped to all protein-coding genes
  • RCg75: The 75th percentile read count value for genes in the sample
  • L: Length of the gene in base pairs; Calculated as the sum of all exons in a gene

Note: The read count is multiplied by a scalar (109) during normalization to account for the kilobase and ‘million mapped reads’ units.

举例

Sample 1: Gene A

  • Gene length: 3,000 bp
  • 1,000 reads mapped to Gene A
  • 1,000,000 reads mapped to all protein-coding regions
  • Read count in Sample 1 for 75th percentile gene: 2,000

FPKM for Gene A = (1,000)*(10^9)/[(3,000)*(1,000,000)] = 333.33

FPKM-UQ for Gene A = (1,000)*(10^9)/[(3,000)*(2,000)] = 166,666.67

如若转载,请注明出处:https://www.ouq.net/rnaseqmrnafpkmnormalizationprotocol.html

(0)
打赏 微信打赏,为服务器增加100M流量 微信打赏,为服务器增加100M流量 支付宝打赏,为服务器增加100M流量 支付宝打赏,为服务器增加100M流量
上一篇 2021年6月25日 下午7:11
下一篇 2021年6月30日 下午7:25

相关推荐

  • ggsci:ggplot2科学期刊主题调色板

    1.介绍 ggsci 提供一系列高质量的调色板,其灵感来自于科学期刊、数据可视化图书馆、科幻电影和电视节目中使用的颜色。.The color palettes in ggsci a…

    2022年5月19日
  • R:计算数据框中每一行的标准偏差

    RowSD = function(x) {sqrt(rowSums((x – rowMeans(x))^2)/(dim(x)[2] – 1))}

    R 2022年4月21日
  • Cytoscape基因互作网络分析软件和教程

    Cytoscape是一个开放源代码软件平台,用于可视化分子相互作用网络和生物途径, 并将这些网络与注释,基因表达谱和其他状态数据整合在一起 。 尽管Cytoscape最初是为生物学…

    2020年3月21日
  • Pheatmap包使用

    Pheatmap简介: Pretty Heatmaps——Implementation of heatmaps that offers more control over dime…

    R 2020年3月15日
  • FunRich:功能丰富的分析工具

    FunRich:功能丰富的分析工具http://www.funrich.org/ FunRich 是一个独立的软件工具,主要用于基因和蛋白质的功能富集和相互作用网络分析。此外,分析…

    2022年3月21日